您的当前位置: 产后精神病 > 饮食调养

2016年人工智能医疗健康创新趋势报告

《年人工智能医疗健康创新趋势报告》最后两篇的研究范围主要为全球范围内医疗健康领域的人工智能初创公司,纳入本报告统计范围的初创公司共74个。这些初创公司分布在虚拟助理、医学影像、药物挖掘、营养学、生物技术、急救室/医院管理、健康管理、精神健康、可穿戴设备、风险管理和病理学共11个领域。我们重点分析了其中的8个领域,看看他们是如何将人工智能技术应用到医疗领域中的。

《年人工智能医疗健康创新趋势报告》公开版内容结构如下:

第一篇:科技巨头人工智能布局

第二篇:IBMWatson人工智能医疗应用详情剖析

第三篇:-全球医健人工智能创投数据分析

第四篇:医疗搭上人工智能可以做什么?(上)

第五篇:医疗搭上人工智能可以做什么?(下)

以下是第五篇:

人工智能搭上医疗可以做什么?(下)

人工智能对于医疗健康领域中的应用已经非常广泛,从应用场景来看主要分成了虚拟助理、医学影像、药物挖掘、营养学、生物技术、急救室/医院管理、健康管理、精神健康、可穿戴设备、风险管理和病理学共11个领域,我们着重分析前8个,这一篇包含生物科技、急救室/医院管理、健康管理和精神健康四个方面。

生物科技:带来更好的数据处理

在生物科技方面,人工智能能带给我们更好的数据处理方式。在中国,人工智能在生物技术领域上已经走在了世界的前列,比如在语音技术、生物特征识别方面,甚至能够与发达国家并列。在我国,最为出名的人工智能生物科技初创公司,就是碳云智能。

碳云智能希望建立一个健康大数据平台,通过收集人们各种各样的生物数据,然后在这个数据基础上建立一个人工智能的内核模型,然后把它对接起来,做这样一个整合。利用人工智能技术处理这些数据,帮助人们做健康管理。碳云智能的数据来源包括两部分,一部分靠自己的技术能力获取,一部分靠合作伙伴获取。靠该团队的核心技术获取的有基因数据、微生物数据(肠道、口腔、皮肤等)、蛋白及代谢数据(尿液、汗液、血液等)等。碳云智能要做的事情主要是将生物技术、生命大数据、人工智能和互联网结合起来。

碳云智能的创始人来自华大基因,但是他们并没有选择重资产的上游测序行业,也没有选择重运营的针对C端进行服务的下游基因检测,而是成为中间端的数据整合、挖掘、分析的服务提供商。通过智能的大数据分析,提出对不健康状态的干预措施,为医疗、慢病管理、美容、健身提供个性话解决方案。

急救室/医院管理:辅助急诊室管理

医院中,急诊科的管理往往非常混乱。医院到顶尖医疗机构,管理者和前线的医护人员每天面对数以千计的诸如怎么配备人员、手术室、占用时间预估问题,整个管理和看病流程效率偏低,对医生经验非常要求高。医院为例,医院急诊科成立于年,建科之初,日均急诊量大约为三四十人次,年达到一百多人次,年升至五六百人次。为适应急诊患者人数的增长,急诊床位由21张增至多张。然而,床位的增长速度仿佛永远跟不上患者的增长速度,刚刚增加的床位总是很快又被填满,急诊科总是人满为患。但是实际上,非急诊患者至少占1/3,需要立刻抢救的大概只占急诊总量的5%~10%。而在美国,每年在医疗上的开支接近3万亿美元,占GDP比例超过18%,不过更为痛心的是亿美元是浪费的,比如一个手术室即使不做手术,成本也是美元/小时,医疗资源浪费是一个顽疾。因此如何提高医疗服务效率是政府头痛的事,由于没有智能的医疗健康系统,经常会出现病人在急诊室门口等待几小时却无人医治,或者医护人员和病床资源空闲时,却无人可医的情况。

AnalyticsMD医院智能决策分析系统技术的初创公司,成立于年,总部位于美国加州。AnalyticsMD开发符合HIPAA标准的SaaS,已经使用在了旧金山的医疗机构。它从美国政府医疗网站收集详细数据,美国所有接受医疗保险以及医疗补助基金的医疗机构数据都汇聚于此。利用实时分析的saas平台分析这些数据,可输出辅助性的推荐信息,医院管理者、医护人员决策。

如何将得到的庞大数据进行分析,输出直观和具有参考指导意义的结果,减少医疗资源的浪费,是考验AnalyticsMD的一道难题,也是其差异化竞争的优势所在。AnalyticsMD医院建立SaaS系统有两个目的。医院的管理者时时掌握目前的工作状态和进度,做出更好的选择,不落后于其他同行。另一个目的就是提高病人和医护人员看病的质量和效率,比如医护人员和病床之类的资源可以在空出来的第一时间被利用,防止出现那种病人在急诊室门口无人医治的情况。还有,只要使用了AnalyticsMD开发的系统,利用系统分析的数据,就可以得到类似如何让病人避免遭遇治疗瓶颈的建议等。

以往,能否减少医疗开支决定因素在于前线的医务人员、临床医生以及护士,他们的经验是决定成本和服务水平的关键。现实情况是,他们得不断地处理一个又一个的紧急病例,根本没有时间去研究繁多的病例图表来提高效率。有了AnalyticsMD开发系统自带的DecisionOS之后,情况就有了变化。从医院自身的EMR系统提取大数据(医院的EMR系统,数据经过加密处理符合HIPAA),通过机器算法处理,系统自动分析、监测和预估,给临床医生提供最合理的建议,帮助他们在合适的时间内给病人提供最合适的治疗和服务。医生不需要再去反复研究那些繁杂的病例报告等数据。结果是,无论在病人的安全性、满意度和医疗成本控制上,都有效得到解决。

AnalyticsMD通过大规模的机器学习预测,经过分析后的一些指标,如病人的停留时间和数量,可视化的数据将提供给医护人员更多辅助。医院服务病人的相关数据,分析出如病房或手术室不足等问题的原因,从医院的资源配置。

健康管理:更智能更全面的数据管理

有关个人健康的数据是十分复杂的。假如我们把一个人所有的健康数据都收集起来,完全可以用“生命数据化”来形容。生命数据化有不同维度的数据:基因数据、生理数据(比如血压、脉搏)、环境数据(比如每天呼吸的空气)、社交数据、蛋白数据等。有了生命科学大数据,加上人工智能最终可以实现人们对健康的前瞻性管理。

Welltoks是一家健康管理公司,主要







































北京哪家治疗白癜风专业
北京专治白癜风的医院哪家最好



转载请注明:http://www.ddhhq.com/ystl/5310.html